Barion Pixel Zwei- und dreidimensionale Kurvenintegrale | MATHEKING
 

Zwei- und dreidimensionale Kurvenintegrale

Text of slideshow

Hier ist dieses Vektorfeld:

Integrieren wir es über diese Kurve:

Besonders spannend wird es nicht …

Jetzt kommt das Skalarprodukt …

Und zum Schluss integrieren wir noch ein bisschen.

Hier ist das nächste Vektorfeld. Dreidimensional, damit es nicht langweilig wird.

Integrieren wir es über diese Kurve:

Nun, das ist eine räumliche Kurve …

Folglich hat sie drei Koordinaten.

Kein Problem, dann aktualisieren wir halt unsere Formeln …

Wenn wir uns die Mühe machen und substituieren, stellt sich heraus, dass das Integral genau null ist.

Auf den ersten Blick erscheint das vielleicht etwas seltsam, aber bald werden wir noch andere aufregende Entdeckungen machen …

Auf zum
Tutorial Technische Mathematik 2.
Jetzt sind Sie dran. Lösen Sie die Aufgabe alleine und überprüfen Sie die Lösung anschließend in diesem Video!
Wir zeigen dir, wie die Seite funktioniert!
Entdecke die Welt der einfachen Mathematik!
  • Es macht Sinn, es macht Spaß, es ist das ganze Geld wert.

    Thomas, 23
  • Mein Bruder in der siebten Klasse hat das Ableiten gelernt, was ein ziemlicher Beweis dafür ist, dass es klar erklärt wird.

    Georg, 18
  • Eine Website, die sogar einem blinden Pferd beibringen würde, sich zu integrieren.

    Regina, 26
  • Von zu Hause aus verfügbar und viel billiger als ein Privatlehrer. Ich benutze es, wann immer ich will.

    Milan, 19
LoginaberRegistrieren Back arrow Alle Episoden
aus diesem Thema