Barion Pixel Aufgabe | Lokale Extrema und Sattelpunkte bestimmen | MATHEKING
 

Aufgabe | Lokale Extrema und Sattelpunkte bestimmen

Text of slideshow

Die ersten beiden Koordinaten entsprechen den Ableitungen nach x und y, und die dritte Koordinate ist immer –1.

Für welchen Parameter geht die Tangente, die im Punkt die Funktion

berührt, durch den Punkt ?

Ein Punkt liegt in einer Ebene, wenn die Ebenengleichung beim Einsetzen der Punktkoordinaten erfüllt ist.

Hier ist unser :

GRADIENTVEKTOR UND RICHTUNGSABLEITUNG

Der Vektor, der aus den Ableitungen der Funktion nach x und y gebildet wird, heißt Gradient oder auch Gradientvektor.

Dies ist der Gradientvektor:

oder kurz .

Mithilfe des Gradientvektors können wir die Richtungsableitung berechnen. Die Richtungsableitung gibt die Steigung der Funktionsfläche in einer beliebigen, von uns vorgegebenen Richtung an.

Stellen wir uns einen Bergsteiger vor, der im Punkt P auf der Fläche steht und in die Richtung losläuft.

Die Richtungsableitung gibt an, wie steil es für den Bergsteiger nach oben geht.

Die Richtungsableitung lässt sich sehr einfach berechnen: Sie ist das Skalarprodukt aus Gradientvektor und dem Vektor mit der Länge 1.

Die Richtungsableitung der Funktion im Punkt :

( ist ein Einheitsvektor)

Sehen wir uns gleich ein Beispiel an!

 

Aufgabe | Lokale Extrema und Sattelpunkte bestimmen

12
Auf zum
Tutorial Technische Mathematik 2.
Jetzt sind Sie dran. Lösen Sie die Aufgabe alleine und überprüfen Sie die Lösung anschließend in diesem Video!
Wir zeigen dir, wie die Seite funktioniert!
Entdecke die Welt der einfachen Mathematik!
  • Genial um Mathe zu lernen.

    Adam, 19
  • Es wurde von älteren Studenten mit dem Prädikat „obligatorisch“ empfohlen.

    Richard, 19
  • Du kannst keinen Privatlehrer finden? Nicht einmal hinsehen! Gehen Sie zu dieser Seite.

    Barbara, 19
  • Es ist die beste klare, interpretierbare und nutzbare Lernmöglichkeit zum niedrigsten Preis.

    Ellen, 23
LoginaberRegistrieren Back arrow Alle Episoden
aus diesem Thema